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Abstract. An experiment of impulsive electrodynamics [Eur. Phys. J. D 15, 87 (2001)] has been interpreted
by the experimenters as a confirmation of Ampère’s law, because they consider the force exerted on a mobile
section as due only to another small section. The integration over all the circuit gives zero longitudinal
force by both Ampère’s and Grassmann’s laws. The correct interpretation of the experiment comes from
analyzing the contributions of the different air pressures in the two air gaps due to different solid angles
for radiation and particle losses during the electrical discharge. Moreover, there is a larger number of ions
hitting the bases of the smaller gap because of a larger useful solid angle. Finally, ions are more trapped
in the smaller gap because of a larger number of bounces. This interpretation leads to a better agreement
with the experimental results.

PACS. 01.55.+b General physics – 03.50.De Classical electromagnetism, Maxwell equations –
41.20.-q Applied classical electromagnetism – 45.20.Dd Newtonian mechanics

1 Introduction

In a recent, interesting experiment (sketched in Fig. 1)
Graneau et al. [1] have measured the force on a mobile
section of length 55 mm between two air gaps. Their re-
sults are reported in Figure 2 together with their theoret-
ical interpretations. It immediately appears that the line
interpolating their experimental results is strongly differ-
ent from the continuous line representing their theoretical
prediction. The latter has been obtained by Ampère’s law
applied to the mobile section and section 1 of Figure 1.
Strangely enough, N. Graneau et al. neglected the contri-
bution due to the rest of the circuit, including the arcs in
the two air gaps. The reason for this presumably is that
they are supporters of Ampère’s law that predicts longi-
tudinal forces between current elements and they want
to confirm it at any cost. For readers’ convenience we
summarize the 150 years standing electrodynamics contro-
versy regarding the elemental laws that express the force
between two current elements I1ds1 and I2ds2, where I1

and I2 are the currents flowing in the elements (or seg-
ments) ds1 and ds2, respectively. The first historical ex-
pression has been given by Ampère and reads

δ2FA2 = − µ0r̂
4πr2

I1I2 (2 ds1 · ds2 − 3 ds1 · r̂ds2 · r̂) , (1)
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where
r = r2 − r1, and r̂ = r/r. (2)

The other expression was obtained by Biot and Savart in
a particular case, and by Grassmann in the general case,
by a combination of Laplace’s second law

δ2F2 = I2ds2 × δB, (3)

with Laplace’s first law

δB =
µ0

4π
I1δs1 × r̂

r2
, (4)

thus deriving

δ2FG2 =
µ0

4πr2
I1 I2 ds2 × (ds1 × r̂). (5)

While equation (1) is symmetric in ds1 and ds2, thus be-
ing in agreement with the action and reaction principle,
equation (5) is not symmetric and therefore does not com-
ply with Newton’s third law. That is why Maxwell himself
wrote, in his famous treatise, that “Ampère’s expression
will remain the queen of all the others”. However, a current
element cannot be a steady-state system. Consequently,
the electromagnetic (e.m.) momentum changes so that the
action and the reaction relevant to the forces exerted on
the current elements must be violated. To disregard the
impulse-momentum balance (including the e.m. one not
known to Maxwell) is the main cause of all the criticisms
raised against Grassmann’s equation (5). On the other
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hand, people often consider as meaningless the discussion
on the elementary laws just because a current element
cannot be a steady-state system. But we show later that
a current element is the superposition of equal and oppo-
site point-like electric charges in relative motion so that
the controversy can be solved.

When it is, for the unit vectors, dŝ1 = dŝ2 = r̂ we
derive from Ampère expression (1)

δ2FA2 =
µ0

4π r2
r̂ I1I2 ds1ds2, (6)

while Grassmann’s equation (5) gives δ2FG2 = 0. The
presence of the longitudinal force (6) induced some peo-
ple to think, one century ago, that the results derivable
from equations (1, 5) were different even for closed circuits.
But it was soon proved theoretically that in these cases
the results were equal. Then some authors thought that
different results could be obtained for the force exerted
on a part of a circuit and due to the whole, same circuit.
Two of them [2,3] performed somewhat similar experi-
ments that they claimed to be in agreement with the pre-
dictions of equation (1) and in disagreement with those of
equation (5). But two of us [4] have demonstrated that the
two expressions give the same results even for the force ex-
erted on a part of a circuit. Had the two mentioned exper-
iments [2,3] been performed in a correct way they would
have disproved the predictions of both equations (1, 5).
A more careful experiment performed by some of us [5]
gave results in agreement with standard electrodynamics.
In the same paper [5] it was pointed out that the Pappas
[2] experiment was unreliable for two reasons: (i) the ex-
istence of sharp angles, which imply a strong force not
considered by Pappas [2], and (ii) the use of pulsed cur-
rents whose durations depend on the manual technique of
the experimenter. The second experiment [3] is affected by
the strong force, comparable to the useful one on the rest
of the circuit, due to the electrical connection, which was
not considered by the two Phipps [3]. In fact, if the current
is the same, the force is the same for circuits of different
sizes but similar in shape. Since the two electrical connec-
tions used by the two Phipps [3] are just similar to the
main circuit, the total force is three times that acting on
the main circuit. For further discussion on the experiment
of reference [5], see references [6–8].

At this point, two of the main supporters of Ampère’s
expression (1), P. Graneau and N. Graneau [9], agree
with the results of references [4,5], i.e., that both the-
ory [4] and experiment [5] show that the force exerted
on a part of a circuit and due to the whole circuit con-
firms both equation (1) and equation (5), but they state
that the measure of internal stresses would discriminate
between them. However, internal reactions are defined as
the stresses one must apply to the cross-section of an ele-
ment out from the body (the circuit in our case) to keep it
in equilibrium, by mechanically, but not electrically, iso-
lating any small section of a circuit.

P. Graneau [10] states that experiments favour the
Lorentz force

δF = δqv × B (7)

in electron guns (i.e., on free electrons) and Ampère’s law
on current elements. In fact, equation (3) can be derived
from equation (7) that is experimentally proved up to nine
significant figures in mass spectrometers. The conduction
current in a wire element is due to electrons moving at a
speed v = 400 km/s and scattering against the ion lat-
tice. The acceleration due to a small electric field E in-
side the wire produces an almost imperceptible bending
of the electron trajectory along their free flights between
two subsequent scatterings. The average speed of n elec-
trons is

〈v〉 =
1
n

n∑
i=1

vi (8)

and, in a wire in which a high current density is flowing,
the so called drift velocity 〈v〉 is of the order of 0.01 m/s.
The resultant force on a wire element of length δs and
cross-section S immersed in a magnetic field B is, accord-
ing to equations (7, 8)

δF =
n∑

i=1

evi × B = en〈v〉 × B, (9)

where e is the electron charge. Now it is n = N S · δs
where N is the numerical concentration and S the ori-
ented, vector cross-section, so that, being δ̂s = δs/δs =
〈v̂〉 = 〈v〉/|v|, we can write

e n 〈v〉 = e N S·δs〈v〉 = e N 〈v〉·S δs = j·S δs = I δs (10)

where j = e N 〈v〉 = ρ 〈v〉 is the current density and
ρ = e N the charge density of the electrons. Substituting
equation (10) into equation (9) we obtain equation (3),
i.e., Laplace’s second law that is therefore equivalent,
or derivable, from the Lorentz law, equation (7). Conse-
quently, it is not possible to state that experiments favour
equation (7) for free electrons and Ampère’s law for cur-
rent elements.

Moreover, if the e.m. forces on each element and on
each electric charge composing the current element and
due to the whole circuit are equally given by means of
both equations (1, 5), even the internal stresses must be
equal. Actually, denoting tij (with i, j = 1, 2, 3) the stress
tensor of rational mechanics for continua, and considering
as positive the tensile stresses, the statics equations of
continua

3∑
j=1

∂tij

∂xj
= −f i, (11)

predict the same stresses if the external forces f i per unit
volume are the same. In fact, it is

f i =
δF i

δV
=

δF i

δS · δs (12)

where δV is a volume element of length δs and cross-
section δS, and the force component δF i on the consid-
ered element and due to the whole circuit is equally given
by equations (1, 5). All the qualitative considerations of
reference [11] are useless.
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It is therefore clear that the application of either
Ampère or Grassmann laws to the whole circuit of Figure 1
gives the same result. In particular there is no longitudinal
force on the mobile element but only a small transversal
force. As said before, N. Graneau recognized this conclu-
sion in reference [9] so that his interpretation in refer-
ence [1] (perhaps influenced by Phipps Jr and Roscoe)
is a recrudescence of his initial error. Actually, the ap-
plication of Grassmann’s equation (5) requires a double,
vector integration, i.e., a sixthfold scalar integration as
done in reference [5], one around the whole circuit and
other over the mobile section (which is a part of the cir-
cuit). The same double integration, one over the whole
circuit, can be performed for the application of Ampère’s
equation (1). However, since the total action of the mobile
part on itself is zero [because Eq. (1) satisfies action and
reaction], one can omit the integration over the mobile
part. It is therefore wrong to state (as done in Sect. 2 of
Ref. [1]) that “the difference between the two laws, which
is expressed by an exact differential quantity, no longer
disappears since there is no closed loop integral, and the
two laws therefore give rise to quite distinct predictions
for this single-circuit circumstance”. Indeed, the effect of
the exact differential on the mobile rod is zero (because
of action and reaction) and there is no difference in the
predictions, as proved in references [4,5]. The longitudi-
nal forces observed in reference [1] must therefore have
another interpretation.

After correcting the values of the electrical parameters
(given in Ref. [1]) in Section 2, we give a rough inter-
pretation of the experiment in Section 3. We present the
conclusion in Section 4.

2 Parameters of the electrical circuit

The circuit used in reference [1] and shown in Figure 1
can be schematized by an inductance L in series with a
resistance R and a capacitance C that is initially charged
with a voltage V0. The current is therefore

I =
V0

√
C/L√

1 − R2C/(4L)
exp

(
−Rt

2L

)

× sin

(
t√
LC

√
1 − R2C

4L

)
· (13)

The minimum capacitance used in reference [1] is Cm =
3.34 µF, the measured angular frequency is the maximum
one ωM = 3.4 × 105 s−1 so that the inductance must be,
if R2C/(4L) � 1,

L = (Cω2)−1 = 2.59 µH, (14)

instead of their [1] estimated value L = 2.8 µH. Their
measured time constant τ of the decay (5th column of
Tab. 1 of Ref. [1]) is τ = 54.3 µs. Consequently, we derive
from equation (13), since τ = 2L/R,

R =
2L

τ
= 9.54 × 10−2 Ω, (15)
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Fig. 1. Sketch of the electrical circuit used by N. Graneau
et al. [1]. The capacitors C have been charged so as to have a
potential difference V0. Once closed the switch S a current I
flows in the circuit with two discharges in the two gaps.

so that
R2C/(4L) = 2.93 × 10−3. (16)

This value is much less than unity, so that the correction
to equation (14) is in the fourth significant figure.

As derivable from equation (13), the amplitude of I

for t → 0 is I0 � V0

√
C/L, which has been measured and

reported in the third column of Table 1 of reference [1]. It
is I0 = 42.9 kA, whence

V0 = I0

√
L/C = 37.7 kV, (17)

instead of the value V0 = 33 kV reported in the first col-
umn of Table 1. We confirm the two corrected values (of L
and V0) by the agreement between the values of the dissi-
pated power P calculated in two different ways. In the first
way we express P by the Joule dissipated power averaged
over half a period T

P =
〈
RI2

〉
T/2

� 1
2
RV 2

0

C

L
exp

(
−2t

τ

)

= 8.74 × 107 exp
(
−2t

τ

)
W. (18)

In the second way we start from the energy U stored in C

U =
1
2
CV 2

0 = 2.37 × 103 J. (19)

Since

U =
∫ ∞

0

P dt =
∫ ∞

0

P0 exp
(
−2t

τ

)
dt = P0τ/2, (20)

we obtain

P0 = 2U/τ =
2 × 2.37 × 103

5.43 × 10−5
= 8.73 × 107 W, (21)

in excellent agreement with equation (18). If we had kept
V0 = 33 kV there would have been a disagreement by a
factor 1.3.

In the case of C = 6.7 µF, it is ω = 2.5 × 105 s−1,
hence L = 2.39 µH; R0 = 6.4× 10−2 Ω; U = 4.71× 103 J,
and P0 = 1.33 × 108 W.



224 The European Physical Journal D

3 Rough evaluation of the longitudinal
mechanical forces

In this section we present a simple, approximate model
to determine the mechanical force acting on the mobile
section of the electrical circuit between the two air gaps.

The current I and the power P reach their maximum
values in a short time ∆t = Tp/4, where Tp is the pe-
riod 2π/ω of the damped oscillating current. In this time
interval the energy E =

∫ ∆t

0
P dt, dissipated mainly in the

air within the gaps, increases the temperature and pres-
sure causing a sudden rapid expansion of the gas.

The energy injected per unit volume of each gap is
the same, and the molecules, ions, electrons and electro-
magnetic radiation bounce back and forth while hitting
the upper and lower solid walls of the gap. However, ac-
cording to this model, these particles have more chance
to remain confined in the smaller than in the larger gap.
Thus, the impulses transfered to the mobile rod by the
expansion in the two gaps are different, being relatively
larger the impulse from the small gap. It follows that the
rod will be subjected to a net upward impulse that pushes
it up.

In our model, part of the dissipated energy remains
within the volume of the gap and transforms into kinetic
energy Ek of the gas particles and the injected energy cre-
ates an expanding wave-front approximately in the radial
direction from the center of the gap. The other part of the
dissipated energy, that we denote by Eloss, flows through
the lateral surface of the gap and corresponds to radiated
power and other forms of work or energy loss through the
lateral surface.

If l = l1 + l2 = 20.5 mm is the total gap of radius
rg = 2.38 mm (see Fig. 1), the energy dissipated in gap 1
reads (∫ ∆t

0

P dt

)
l1
l

= Ek1 + Eloss 1. (22)

With C a proportionality constant, we write

Eloss 1 = C

(∫ ∆t

0

P dt

)
S1l1
S0l

, (23)

where Eloss 1 is the energy leaving the gap through the
lateral surface S1 = 2π rgl1, while S0 = 2π r2

g + 2π rgl1 is
the total boundary surface of gap 1. Since ∆t � τ [where τ
is the decay time constant appearing in Eq. (20)] we may
take P0 as a constant in ∆t so that equation (23) becomes

Eloss 1 = C P0 ∆t
l1
l

l1
rg + l1

· (24)

To estimate C, we consider that, on account of the pre-
vious considerations, in the limit for l1 → l → ∞ the
electrical power is essentially completely lost into radia-
tion and other forms of energy through the lateral surface,
so that C � 1.

The wave-front of the gas possessing the radial en-
ergy Ek1 should reach the surface π r2

g of the mobile rod

approximately in time ∆t. What happens to the gas later
is not important in this model because the relevant im-
pulse is transmitted to the rod at the time of impact ∆t.
We suppose that the wavefront of the radial motion of the
mass of gas takes place at a constant speed V , which we
take first as an adjustable parameter determined by fit-
ting the experimental data. Thus, we conveniently write
Ek1 = Π1l V/2, where Π1l is the linear radial effective
momentum of the expanding gas.

With the above notations, equation (22) reads,

P0 ∆t
l1
l

=
1
2
Π1l V + P0 ∆t

l1
l

l1
rg + l1

, (25)

so that the effective radial momentum is

Π1l =
2 P0 ∆t

V

l1
l

(
1 − l1

rg + l1

)

=
2 P0 ∆t

V

rg

l

l1
rg + l1

· (26)

The fraction of impulse transmitted to the rod sur-
face π r2

g is

∫ ∆t

0

F1 dt = 2 Π1l
Srod

S0
= 2 Π1l

(
π r2

g

2π r2
g + 2π rgl1

)

=
2 P0 ∆t

V

rg

l

rg l1
(rg + l1)2

· (27)

The solid angle Srod/S0 appearing in equation (27) is
meaningful only if all the expanding gas is contained in
a sphere of radius l1/2 with the centre placed in the cen-
tre of the gap. However, when l1/2 � rg, there are about
N = 〈lc〉/l1 diameters of these spheres linearly distributed
in the average chord 〈lc〉. This average chord is easily cal-
culated as

〈lc〉 =
2
π

∫ π/2

0

2 rg sin α dα =
4
π

rg. (28)

When, after a short initial time, the gas density has de-
creased but temperature and pressure are still high, the
molecules of the gas within each sphere may bounce back
and forth between the solid walls for about N times the
case l1/2 � rg before leaving the gap. Thus, the momen-
tum Π1l becomes N times more effective.

Because of this, Π1l in equation (27) should be cor-
rected by a factor f1 that we conveniently write as

f1 = k (1 + N) = k

(
1 +

4
π

rg

l1

)
· (29)

The constant k is determined by normalizing f1 = 1 when
2 rg = l1. We find k = 0.61, so that

f1 = 0.61
(

1 +
4
π

rg

l1

)
· (30)

Similarly, it is

f2 = 0.61
(

1 +
4
π

rg

l2

)
· (31)
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Table 1. Experimental values of the heights h [mm] reached by the mobile element vs. the length l1 [mm] of the lower (and
smaller) gap. The values are relevant to different values of the capacities indicated after h (for example h3.3 corresponds to
C = 3.3 µF). The renormalized values have been obtained to have a unique plot, having assumed C0 = 6.7 µF as the reference
capacity. The renormalized value for a generic C has been obtained as hren = h(C0/C)2.

l1 h3.3 h3.3ren h5 h5ren h6.7 h8.3 h8.3ren h10 h10ren
0 2.5 10.31 4.1 7.36 8.9
0 2.5 10.31 4 7.18 11
1 3 12.37 10.3 18.49 16
1 5.8 10.41
2 1.9 7.83 4.1 7.36 8.4
2 3.3 5.93 6.6
3 11.5 7.49
4 1.3 2.8 1.82 3.3 1.48
4
5 1
8 0.6 0.27

10.2 0 0

With Π1l → f1Π1l in equation (27), the net upward im-
pulse transmitted to the mobile rod of mass m = 17.7 g, is

mv =
∫

F1 dt −
∫

F2 dt =
2 P0 ∆t

V

rg

l
∆∗, (32)

where

∆∗ = rg

[
l1f1

(rg + l1)2
− l2f2

(rg + l2)2

]
· (33)

The time interval ∆t taken by the expanding wavefront of
the exploding gas to reach the mobile rod surface is related
to the velocity V . Since V will be determined empirically
by data fitting, for convenience we write ∆t = rg/V .

The height h reached by the mobile rod is predicted
to be

h =
v2

2g
=

1
2g

(
2P0

mV 2l
r2
g∆∗

)2

. (34)

By comparing the height h of equation (34) with empirical
data, we determine the parameter V to be 1.8× 103 m/s.
In Figure 2, we report a comparison between the values
of h obtained with the phenomenological equation (34)
and those obtained empirically in reference [1] and re-
ported in Table 1.

In conclusion, the geometric factor appearing in the rhs
of equation (34) takes into account the fact that the en-
ergy dissipated in the volume of the gap, with respect the
energy lost through the lateral surface, is relatively larger
in the small lower gap than in the upper gap. For this rea-
son, the dissipated volume energy produces an expansion
with a momentum Πl that is relatively more effective in
the smaller gap, thus producing the upward push of the
mobile rod.

During the expansion there is a pressure gradient di-
rected from inside the gap outward. After the expansion
the pressure inside reaches an equilibrium with the outer
pressure.

In Figure 2, we report our values of the impulse for dif-
ferent gap values and the theoretical interpolating curve.
We see that it interpolates the experimental values much
better than the almost straight line of reference [1]. The

0 5 10

l
1

0

5

10

15

20

h C = 3.3 µF (ren.)
C = 5    µF (ren.)
C = 6.7 µF
C = 8.3 µF (ren.)
C = 10  µF (ren.)
our theoretical data
GPR data

Fig. 2. Experimental points of the heights h [mm] reached
by the mobile section vs. the length l1 [mm] of the smaller
gap as given in reference [1] and renormalized in Table 1. The
dashed line is the theoretical prediction of Graneau, Phipps
and Roscoe (GPR) data in reference [1]. The continuous line
is our theoretical prediction that fits much better the experi-
mental points.

only exception regards the case l1 = 0 since in this case
many other factors intervene. First of all, the current at
the beginning of the discharge flows through the metallic
contact. The contact area is usually small so that it melts
and evaporates, thus producing a pressure that detaches
a little the mobile section. At this point our mechanism
acts but with the decaying tail of the damped current,
thus giving a smaller impulse.

4 Conclusions

The interpretation of the considered experiment made
by the authors [1] is completely wrong, as discussed in
the introduction. Indeed, they consider the action of a
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single wire element below the smaller gap instead of in-
tegrating along the whole circuit, including the current
elements in the plasma during the discharge. The inte-
gration of Ampère’s expression (1) over the whole cir-
cuit (for instance, force on ds2 and integration over ds1)
gives the same result as the integration of Grassmann’s
expression (5), i.e., a transversal force on ds2 (with zero
longitudinal force). This result is a theorem [4] and has
also experimentally been verified [5]. Moreover, the value
of the longitudinal force calculated by N. Graneau et al. [1]
depends on the length δs1 of the considered element in the
circuit, since the force is proportional to δs1, but inversely
proportional to the square of the distance r between the
centre of δs1 and the centre of the mobile element be-
tween the two gaps. Even if they have chosen δs1 at best,
they succeed to have agreement with their experiment for
a single value of the height d1 of the smallest gap. Their
predicted linear behaviour (see Fig. 2) is very far from the
curved line joining their experimental values.

The interpretation of the experimental results is given
in Section 3 by a simple energetic balance, taking into
account the different losses in the two gaps, due to the
different solid angles. There is also the longer time of ac-
tion in the smaller gap due to the more bounces of the hot
ions (in the electrical discharge) in the smaller gap.

A more refined treatment implies the solution of a
system of five equation in the following five unknowns,
namely: (1) air density N , (2) air pressure p, (3) air
temperature T , (4) velocity V of the expansion of the air,
(5) velocity of the expansion of the discharge channel. The
equations are: (1) the equation for a perfect gas p = NKT ,
(2) a polytropic relation T/T0 = (N/Na)0.1, (3) the Euler
equation, (4) the continuity equation, (5) the energetic
balance. Equations (1) and (2) are algebraic while (3), (4),

and (5) are nonlinear differential equations. Moreover, the
collision frequencies and the mean free paths of the elec-
trons and ions in the discharge channel must be evaluated.
All this very complicated treatment will be given in a fu-
ture paper [8] where the agreement with the experimen-
tal values is obtained without the phenomenological value
V = 1800 m/s−1 introduced after equation (34). At the
same time it will be shown why the rough treatment of
Section 3 gives such excellent agreement with the experi-
mental results of reference [1].
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